Nontrivial coherent families of functions Lecture 3

Chris Lambie-Hanson

Institute of Mathematics Czech Academy of Sciences

Winter School 2022

III. Higher dimensions

Review

Let $n \geq 2$. For $\vec{f} \in ({}^{\omega}\omega)^n$, $I(\vec{f}) = I(f_0) \cap \ldots \cap I(f_{n-1})$. Let $\mathcal{F} \subseteq {}^{\omega}\omega$, and let $\Phi = \langle \varphi_{\vec{f}} : I(\vec{f}) \to \mathbb{Z} \mid \vec{f} \in \mathcal{F}^n \rangle$ be an alternating family of functions.

 Φ is *n*-coherent if, for all $\vec{f} \in \mathcal{F}^{n+1}$, we have $\sum_{i=0}^{n} (-1)^{i} \varphi_{\vec{f}^{i}} =^{*} 0$. For n = 2, this becomes $\varphi_{gh} - \varphi_{fh} + \varphi_{fg} =^{*} 0$ for all $f, g, h \in \mathcal{F}$.

 Φ is *n*-trivial if there is an alternating family

$$\left\langle \psi_{\vec{f}} : I(\wedge \vec{f}) \to \mathbb{Z} \mid \vec{f} \in \mathcal{F}^{n-1} \right\rangle$$

such that $\sum_{i=0}^{n-1} (-1)^i \psi_{\vec{f}i} =^* \varphi_{\vec{f}}$ for all $\vec{f} \in ({}^{\omega}\omega)^n$. For n = 2, this is a family $\langle \psi_f \mid f \in \mathcal{F} \rangle$ such that $\varphi_{fg} =^* \psi_g - \psi_f$ for all $f, g \in \mathcal{F}$. $\lim^n \mathbf{A} = 0$ iff every *n*-coherent family on $({}^{\omega}\omega)^n$ is *n*-trivial.

Two basic lemmata

Lemma

Suppose that $\mathcal{F} \subseteq {}^{\omega}\omega$ and $\Phi = \langle \varphi_f \mid f \in \mathcal{F} \rangle$ is coherent. Then the following are equivalent:

- 1 Φ is trivial;
- there is a family (ψ_f : I(f) → Z | f ∈ F) of finitely supported functions such that, for all f, g ∈ F,

$$\varphi_f - \psi_f = \varphi_g - \psi_g.$$

Two basic lemmata

Lemma

Suppose that $\mathcal{F} \subseteq {}^{\omega}\omega$, n > 1, and $\Phi = \langle \varphi_{\vec{f}} \mid \vec{f} \in \mathcal{F}^n \rangle$ is *n*-coherent. Then the following are equivalent:

- 1 Φ is trivial;
- 2 there is an alternating family $\langle \tau_{\vec{f}} : I(\vec{f}) \to \mathbb{Z} \mid \vec{f} \in \mathcal{F}^n \rangle$ of finitely supported functions such that, for all $\vec{f} \in \mathcal{F}^{n+1}$, $\sum_{i=0}^{n} (-1)^i (\varphi_{\vec{f}^i} - \tau_{\vec{f}^i}) = 0.$

Sketch of proof (n = 2).

 $1 \Rightarrow 2: \text{ If } \langle \psi_f \mid f \in \mathcal{F} \rangle \text{ witnesses that } \Phi \text{ is trivial, then, for all } f, g \in \mathcal{F}, \text{ let } \tau_{fg} = \varphi_{fg} - (\psi_g - \psi_f).$ $2 \Rightarrow 1: \text{ Given } \langle \tau_{fg} \mid f, g \in \mathcal{F} \rangle: \text{ for each } x \in \omega^2, \text{ find } f_x \in \mathcal{F} \text{ such } \text{ that } x \in I(f_x). \text{ For all } f \in \mathcal{F} \text{ and all } x \in I(f), \text{ let } \psi_f(x) = (\tau_{f,f_x}(x) - \varphi_{f,f_x}(x)).$

Lemma

Suppose that $\mathcal{F} \subseteq {}^{\omega}\omega$ is countable and $\Phi = \langle \varphi_f \mid f \in \mathcal{F} \rangle$ is coherent. Then Φ is trivial.

Lemma

Suppose that $n \ge 1$, $\mathcal{F} \subseteq {}^{\omega}\omega$, $|\mathcal{F}| < \aleph_n$, and $\Phi = \langle \varphi_{\vec{f}} | \vec{f} \in \mathcal{F}^n \rangle$ is *n*-coherent. Then Φ is trivial.

Proof for n = 2.

Enumerate \mathcal{F} as $\langle f_{\alpha} \mid \alpha < \omega_1 \rangle$ and, for each $\alpha < \beta < \omega_1$, denote $\varphi_{f_{\alpha}f_{\beta}}$ by $\varphi_{\alpha\beta}$. By recursion on $\alpha < \omega_1$, we will define functions $\psi_{\alpha} : I(f_{\alpha}) \to \mathbb{Z}$ such that, for all $\alpha < \beta < \omega_1$, we have $\psi_{\beta} - \psi_{\alpha} =^* \varphi_{\alpha\beta}$. Suppose that $\beta < \omega_1$ and we have defined $\langle \psi_{\alpha} \mid \alpha < \beta \rangle$. For each $\alpha < \beta$, let $\tau_{\alpha} = \varphi_{\alpha\beta} + \psi_{\alpha}$.

Claim: $\langle \tau_{\alpha} \mid \alpha < \beta \rangle$ is 1-coherent. Proof of claim: For all $\alpha < \alpha' < \beta$, we have

$$egin{aligned} & au_{lpha'} - au_{lpha} = arphi_{lpha'eta} + \psi_{lpha'} - arphi_{lphaeta} - \psi_{lpha} \ & = arphi_{lpha'eta} - arphi_{lphaeta} + (\psi_{lpha'} - \psi_{lpha}) \ & =^* arphi_{lpha'eta} - arphi_{lphaeta} + arphi_{lphalpha'} \ & =^* 0. \end{aligned}$$

Since β is countable, $\langle \tau_{\alpha} \mid \alpha < \beta \rangle$ is trivial, so we can let $\psi_{\beta} : I(f_{\beta}) \to \mathbb{Z}$ trivialize it.

Then, for all $\alpha < \beta$, we have

$$egin{aligned} \psi_eta - \psi_lpha &=^* au_lpha - \psi_lpha \ &= (arphi_{lphaeta} + \psi_lpha) - \psi_lpha \ &= arphi_{lphaeta}. \end{aligned}$$

Thus, ψ_{β} is as desired, and we can continue with our construction. At the end, we have arranged that $\langle \psi_{\alpha} \mid \alpha < \omega_{1} \rangle$ trivializes Φ . \Box

Corollary

For all n > 1, if $\mathfrak{d} < \aleph_n$, then $\lim^n \mathbf{A} = 0$.

Theorem (Dow-Simon-Vaughan, '89)

If $\mathfrak{d} = \aleph_1$, then $\lim^1 \mathbf{A} \neq 0$.

Theorem (Bergfalk, '17, [2]) Suppose that $\mathfrak{b} = \mathfrak{d} = \aleph_2$ and $\diamondsuit(S_{\aleph_1}^{\aleph_2})$ holds. Then $\lim^2 \mathbf{A} \neq 0$.

Proof sketch.

Fix a sequence $\langle f_{\alpha} \mid \alpha < \omega_2 \rangle$ that is <*-increasing and <*-cofinal in ${}^{\omega}\omega$. It will suffice to construct a nontrivial 2-coherent family $\langle \varphi_{\alpha\beta} : I(f_{\alpha} \wedge f_{\beta}) \rightarrow \mathbb{Z} \mid \alpha < \beta < \omega_2 \rangle$.

By $\diamondsuit(S_{\aleph_1}^{\aleph_2})$, we can fix a sequence of sequences

$$\langle\langle\psi_{lpha}^{eta}:I(f_{lpha})
ightarrow\mathbb{Z}\midlpha$$

such that, for every sequence $\langle \psi_{\alpha} : I(f_{\alpha}) \to \mathbb{Z} \mid \alpha < \omega_2 \rangle$, there are stationarily many $\beta \in S_{\aleph_1}^{\aleph_2}$ such that

$$\langle \psi_{\alpha} \mid \alpha < \beta \rangle = \langle \psi_{\alpha}^{\beta} \mid \alpha < \beta \rangle.$$

We now construct $\langle \varphi_{\alpha\beta} \mid \alpha < \beta < \omega_2 \rangle$ by recursion on β . Suppose that $\beta < \omega_2$ and $\langle \varphi_{\alpha\alpha'} \mid \alpha < \alpha' < \beta \rangle$ has been defined.

Case 1: $\beta \in S_{\aleph_1}^{\aleph_2}$ and $\langle \psi_{\alpha}^{\beta} \mid \alpha < \beta \rangle$ 2-trivializes $\langle \varphi_{\alpha\alpha'} \mid \alpha < \alpha' < \beta \rangle$. Since $\mathrm{cf}(\beta) = \omega_1$, by a construction from the first lecture, we can find a nontrivial 1-coherent family of functions $\langle \tau_{\alpha}^{\beta} : I(f_{\alpha}) \to \mathbb{Z} \mid \alpha < \beta \rangle$. Now let $\varphi_{\alpha\beta} = -\psi_{\alpha}^{\beta} - \tau_{\alpha}^{\beta}$ for all $\alpha < \beta$.

Claim: This maintains 2-coherence. **Proof of claim:** For all $\alpha < \alpha' < \beta$, we have

$$\begin{split} \varphi_{\alpha'\beta} - \varphi_{\alpha\beta} + \varphi_{\alpha\alpha'} &= -\psi_{\alpha'}^{\beta} - \tau_{\alpha'}^{\beta} + \psi_{\alpha}^{\beta} + \tau_{\alpha}^{\beta} + \varphi_{\alpha\alpha'} \\ &= -(\psi_{\alpha'}^{\beta} - \psi_{\alpha}^{\beta}) - (\tau_{\alpha'}^{\beta} - \tau_{\alpha}^{\beta}) + \varphi_{\alpha\alpha'} \\ &= ^* - \varphi_{\alpha\alpha'} - \mathbf{0} + \varphi_{\alpha\alpha'} \\ &= \mathbf{0}. \end{split}$$

Proof (conclusion).

Case 2: Otherwise. Since $\langle \varphi_{\alpha\alpha'} \mid \alpha < \alpha' < \beta \rangle$ is 2-coherent and $\beta < \omega_2$, it is also 2-trivial. Let $\langle -\varphi_{\alpha\beta} \mid \alpha < \beta \rangle$ be an arbitrary witness to its triviality.

Claim: $\langle \varphi_{\alpha\beta} \mid \alpha < \beta < \omega_2 \rangle$ is nontrivial.

Suppose for sake of contradiction that $\langle \psi_{\alpha} \mid \alpha < \omega_2 \rangle$ satisfies $\psi_{\beta} - \psi_{\alpha} =^* \varphi_{\alpha\beta}$ for all $\alpha < \beta < \omega_2$. Find $\beta \in S_{\aleph_1}^{\aleph_2}$ such that $\langle \psi_{\alpha} \mid \alpha < \beta \rangle = \langle \psi_{\alpha}^{\beta} \mid \alpha < \beta \rangle$. Then at β we were in Case 1 of the construction. Therefore, for all $\alpha < \beta$, we have

$$\psi_{\beta} - \psi_{\alpha} =^{*} \varphi_{\alpha\beta} = -\psi_{\alpha} - \tau_{\alpha}^{\beta}$$

so $-\psi_{\beta} =^{*} \tau_{\alpha}^{\beta}$, i.e., $-\psi_{\beta}$ trivializes $\langle \tau_{\alpha}^{\beta} \mid \alpha < \beta \rangle$, contradicting the fact that $\langle \tau_{\alpha}^{\beta} \mid \alpha < \beta \rangle$ is nontrivial.

Consistent nonvanishing

Corollary (Bergfalk, '17, [2]) PFA $\Rightarrow \lim^2 \mathbf{A} \neq 0.$

Recall that PFA $\Rightarrow \lim^{n} \mathbf{A} = 0$ for all $n \in \omega \setminus \{0, 2\}$.

Theorem (Veličković-Vignati, '21, [5]) Let $n \ge 1$. If $\mathfrak{b} = \mathfrak{d} = \aleph_n$ and $w \diamondsuit (S_{\aleph_k}^{\aleph_{k+1}})$ holds for all k < n, then $\lim^n \mathbf{A} \neq 0$.

Therefore, for any $n \ge 1$, it is consistent with ZFC that $\lim^{n} \mathbf{A} \neq 0$.

Simultaneous nonvanishing

Theorem (Bergfalk-LH, '21, [4])

(Assuming the consistency of a weakly compact cardinal), it is consistent that $\lim^{n} \mathbf{A} = 0$ for all $n \ge 1$ (simultaneously).

More precisely, if κ is a weakly compact cardinal and \mathbb{P} is a length- κ finite support iteration of Hechler forcing, then, in $V^{\mathbb{P}}$, $\lim^{n} \mathbf{A} = 0$ for all $n \geq 1$.

Sketch of proof (n=2).

 \mathbb{P} adds a sequence $\langle f_{\alpha} \mid \alpha < \kappa \rangle$ that is <*-increasing and <*-cofinal in ${}^{\omega}\omega$. Fix $p \in \mathbb{P}$ and a name $\dot{\Phi} = \langle \dot{\varphi}_{\dot{f}\dot{\sigma}} \mid \dot{f}, \dot{g} \in {}^{\omega}\omega \rangle$ for

a 2-coherent family. We will find $q \le p$ that forces $\dot{\Phi}$ to be 2-trivial.

It suffices to show that q forces the existence of an unbounded $\dot{A} \subseteq \kappa$ such that $\langle \dot{\varphi}_{\alpha\beta} \mid \alpha < \beta \in \dot{A} \rangle$ is trivial, where $\dot{\varphi}_{\alpha\beta}$ denotes $\dot{\varphi}_{f_{\alpha}f_{\beta}}$.

In turn, it suffices to show that q forces the existence of a family $\langle \dot{\psi}_{\alpha\beta} \mid \alpha < \beta \in \dot{A} \rangle$ of finitely supported functions such that

$$(\dot{arphi}_{eta\gamma}-\dot{\psi}_{eta\gamma})-(\dot{arphi}_{lpha\gamma}-\dot{\psi}_{lpha\gamma})+(\dot{arphi}_{lphaeta}-\dot{\psi}_{lphaeta})=0$$

for all $\alpha < \beta < \gamma \in \dot{A}$. Let $\dot{e}(\alpha, \beta, \gamma)$ denote $\dot{\varphi}_{\beta\gamma} - \dot{\varphi}_{\alpha\gamma} + \dot{\varphi}_{\alpha\beta}$. The above equation then becomes

$$\dot{e}(\alpha,\beta,\gamma) = \dot{\psi}_{\beta\gamma} - \dot{\psi}_{\alpha\gamma} + \dot{\psi}_{\alpha\beta}.$$

Proof sketch (cont.)

For all $\alpha < \beta < \gamma < \kappa$, $\dot{e}(\alpha, \beta, \gamma)$ is forced to be a finitely supported function, so we can find $q_{\alpha\beta\gamma} \leq p$ deciding the value of the restriction of $\dot{e}(\alpha, \beta, \gamma)$ to its support, say as $e(\alpha, \beta, \gamma)$. We can also arrange that $q_{\alpha\beta\gamma} \Vdash "\dot{f}_{\alpha} \leq \dot{f}_{\beta} \leq \dot{f}_{\gamma}"$.

Using the weak compactness of κ , we can find an unbounded $H \subseteq \kappa$ and a finite partial function $e^* : \omega^2 \to \mathbb{Z}$ such that

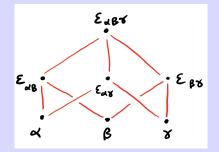
- for all $\alpha < \beta < \gamma \in H$, we have $e(\alpha, \beta, \gamma) = e^*$;
- the sequence ⟨q_{αβγ} | α < β < γ ∈ H⟩ exhibits some strong uniformities (in particular, it forms a kind of 3-dimensional Δ-system, with a "root", q_∅).

 q_{\emptyset} then forces the existence of

- an unbounded $\dot{A} \subseteq H$;
- for each $\alpha < \beta \in \dot{A}$, an ordinal $\dot{\varepsilon}_{\alpha\beta} \in H \setminus (\beta + 1)$;
- for each $\alpha < \beta < \gamma \in \dot{A}$, an ordinal $\dot{\varepsilon}_{\alpha\beta\gamma} \in H \setminus (\max\{\varepsilon_{\alpha\beta}, \varepsilon_{\alpha\gamma}, \varepsilon_{\beta\gamma}) + 1)$

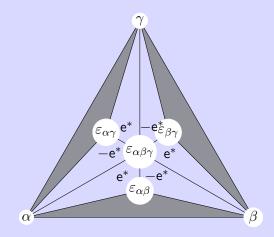
such that, for all $\alpha < \beta < \gamma \in \dot{A}$, the conditions $q_{\alpha,\varepsilon_{\alpha\beta},\varepsilon_{\alpha\beta\gamma}}$,

 $q_{\alpha,\varepsilon_{\alpha\gamma},\varepsilon_{\alpha\beta\gamma}}$, $q_{\beta,\varepsilon_{\alpha\beta},\varepsilon_{\alpha\beta\gamma}}$, $q_{\beta,\varepsilon_{\beta\gamma},\varepsilon_{\alpha\beta\gamma}}$, $q_{\gamma,\varepsilon_{\alpha\gamma},\varepsilon_{\alpha\beta\gamma}}$, and $q_{\gamma,\varepsilon_{\beta\gamma},\varepsilon_{\alpha\beta\gamma}}$ are all in \dot{G} (the generic filter).

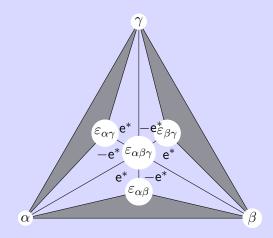


Let G be P-generic over V with $q_{\emptyset} \in G$. Let A, $\langle \varepsilon_{\alpha\beta} \mid \alpha < \beta \in A \rangle$, and $\langle \varepsilon_{\alpha\beta\gamma} \mid \alpha < \beta < \gamma \in A \rangle$ be as on the previous slide. It suffices to show that $\langle \varphi_{\alpha\beta} \mid \alpha < \beta \in A \rangle$ is trivial. To this end, for all $\alpha < \beta \in A$, let $\psi_{\alpha\beta} = e(\alpha, \beta, \varepsilon_{\alpha\beta}) = \varphi_{\beta\varepsilon_{\alpha\beta}} - \varphi_{\alpha\varepsilon_{\alpha\beta}} + \varphi_{\alpha\beta}$. Each $\psi_{\alpha\beta}$ is finitely supported, by the 2-coherence of Φ . We claim that it witnesses that $\langle \varphi_{\alpha\beta} \mid \alpha < \beta \in A \rangle$ is trivial. We must show that, for all $\alpha < \beta < \gamma \in A$, we have

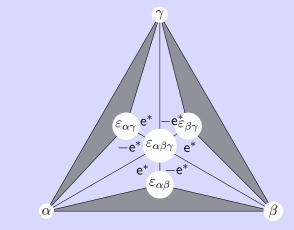
$$e(\alpha,\beta,\gamma)=\psi_{\beta\gamma}-\psi_{\alpha\gamma}+\psi_{\alpha\beta}.$$



Fix $\alpha < \beta < \gamma \in A$. Adding up all of the $e(\cdots)$ -values corresponding to the interior triangles in the above figure (oriented counterclockwise) yields, through cancellation of like terms, precisely $e(\alpha, \beta, \gamma)$.



The $e(\cdots)$ -values of the blue interior triangles all equal $\pm e^*$, as their corresponding q_{\cdots} conditions are all in G. These values cancel, leaving only $e(\beta, \gamma, \varepsilon_{\beta\gamma}) + e(\gamma, \alpha, \varepsilon_{\alpha\gamma}) + e(\alpha, \beta, \varepsilon_{\alpha\beta})$



$$\begin{aligned} \boldsymbol{e}(\alpha,\beta,\gamma) &= \boldsymbol{e}(\beta,\gamma,\varepsilon_{\beta\gamma}) + \boldsymbol{e}(\gamma,\alpha,\varepsilon_{\alpha\gamma}) + \boldsymbol{e}(\alpha,\beta,\varepsilon_{\alpha\beta}) \\ &= \boldsymbol{e}(\beta,\gamma,\varepsilon_{\beta\gamma}) - \boldsymbol{e}(\alpha,\gamma,\varepsilon_{\alpha\gamma}) + \boldsymbol{e}(\alpha,\beta,\varepsilon_{\alpha\beta}) \\ &= \psi_{\beta\gamma} - \psi_{\alpha\gamma} + \psi_{\alpha\beta}. \end{aligned}$$

Further results

Theorem (Bannister-Bergfalk-Moore, '2X, [1])

In the model obtained by adding weakly compact-many Hechler reals, strong homology is additive on the class of locally compact separable metric spaces.

Theorem (Bergfalk-Hrušák-LH, '2X, [3])

Let \mathbb{P} be the forcing to add \beth_{ω} -many Cohen reals. Then, in $V^{\mathbb{P}}$, $\lim^{n} \mathbf{A} = 0$ for all $n \ge 1$.

More general systems

Suppose that κ and λ are infinite cardinals. Given a function $f : \kappa \to [\lambda]^{<\omega}$, let I(f) denote the set $\{(i,j) \in \kappa \times \lambda \mid j \in f(i)\}$. We can then define an inverse system $\mathbf{A}_{\kappa,\lambda} = \langle A_f, \pi_{fg} \mid f, g : \kappa \to [\lambda]^{<\omega}, \ f \leq g \rangle$, where

- $f \leq g$ if, for all $i \in \kappa$, $f(i) \subseteq g(i)$;
- for all $f: \kappa \to [\lambda]^{<\omega}$, $A_f = \bigoplus_{I(f)} \mathbb{Z}$;
- the maps π_{fg} are the obvious projection maps.

Note that our original system **A** is isomorphic to a cofinal subsystem of $\mathbf{A}_{\aleph_0,\aleph_0}$.

More general systems

Theorem (Bergfalk-LH, '2X)

If κ and λ are infinite cardinals, with $\lambda > \aleph_0$, then $\lim^1 \mathbf{A}_{\kappa,\lambda} \neq 0$.

Corollary (Bergfalk-LH, '2X)

Let $X_{\omega_1}^n$ denote the generalized n-dimensional infinite earring space, i.e., the one-point compactification of the sum of ω_1 -many copies of the n-dimensional open unit ball. Then $X_{\omega_1}^2$ (together with countable disjoint unions thereof) is a ZFC counterexample to the additivity of strong homology.

Corollary (Bergfalk-LH, '2X)

The category of pro-abelian groups does not embed fully faithfully into the category of condensed abelian groups (in the context of derived categories).

Questions

Question

Is $\aleph_{\omega+1}$ the minimum value of the continuum consistent with the statement 'limⁿ $\mathbf{A} = 0$ for all $n \ge 1$ '?

Question

For $n \ge 2$, if $\mathfrak{b} = \mathfrak{d} = \aleph_n$, must it be the case that $\lim^n \mathbf{A} \neq 0$?

Question

What can be said about $\lim^{n} \mathbf{A}_{\kappa,\lambda}$ for $n \ge 2$ and uncountable values of κ or λ ? For example:

- For $n \ge 2$, is it the case that $\lim^{n} \mathbf{A}_{\kappa,\lambda} \neq 0$ whenever $\lambda \ge \aleph_{n}$?
- For n ≥ 2 and uncountable κ, is it the case that limⁿ A_{κ,ω} = 0 if and only if limⁿ A = 0'?

References

- Nathaniel Bannister, Jeffrey Bergfalk, and Justin Tatch Moore, On the additivity of strong homology for locally compact separable metric spaces, (2021), Preprint.
- Jeffrey Bergfalk, *Strong homology, derived limits, and set theory*, Fund. Math. **236** (2017), no. 1, 71–82.
- Jeffrey Bergfalk, Michael Hrušák, and Chris Lambie-Hanson, Simultaneously vanishing higher derived limits without large cardinals, (2021), Preprint.
- Jeffrey Bergfalk and Chris Lambie-Hanson, Simultaneously vanishing higher derived limits, Forum Math. Pi 9 (2021), Paper No. e4, 31. MR 4275058
- Boban Veličković and Alessandro Vignati, Non-vanishing higher derived limits, (2021), Preprint.

Thank you!

